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Abstract
A multi-parafermion basis of states for the Zk parafermionic models is derived.
Its generating function is constructed by elementary steps. It corresponds to
the Andrews multiple sum which enumerates partitions whose parts separated
by the distance k − 1 differ by at least 2. Two analogous bases are derived for
graded parafermions; one of these entails a new expression for their fermionic
characters.

PACS numbers: 11.25.Hf, 02.10.Ox, 05.30.Pr, 11.10.−z

1. Introduction

1.1. Rogers–Ramanujan identities and the Andrews–Gordon generalization

The search for fermionic-type characters, that is, characters expressed as positive sums, has
brought the topic of Rogers–Ramanujan identities within the framework of conformal field
theory [1]3. The Rogers–Ramanujan identities are∑

m�0

qm2+(2−i)mzm

(q)m
=

∏
n�=0,±i mod 5

1

1 − qn
, (i = 1, 2) (1.1)

where

(a)n = (a; q)n =
n−1∏
i=0

(1 − aqi). (1.2)

This has various generalizations, the most relevant one being the Andrews–Gordon identity
(see, e.g., [3]):

∞∑
m1,...,mk−1=0

qN2
1 +···+N2

k−1+Ni+···+Nk−1

(q)m1 · · · (q)mk−1

=
∏

n�=0,±i mod 2k+1

1

1 − qn
, (i = 1, . . . , k) (1.3)

3 For further early references and a brief review of fermionic-type characters, see the introduction of [2].

0305-4470/05/388225+14$30.00 © 2005 IOP Publishing Ltd Printed in the UK 8225

http://dx.doi.org/10.1088/0305-4470/38/38/004
mailto:patrick.jacob@durham.ac.uk
mailto:pmathieu@phy.ulaval.ca
http://stacks.iop.org/ja/38/8225


8226 P Jacob and P Mathieu

with Nj defined as

Nj = mj + · · · + mk−1. (1.4)

The identity (1.3) has the following combinatorial interpretation: the lhs is the generating
function for partitions (n1, n2, . . .) subject to the difference 2 condition

nj � nj+k−1 + 2, (1.5)

and containing at most i − 1 parts equal to 1, while the rhs is the generating function for
partitions without parts equal to 0,±i mod 2k + 1.

In the context of conformal field theory, we are mainly interested in the lhs, which
is a fermionic-type expression. Granting that the two sets of partitions just described are
equinumerous (which is the Gordon identity), the difficult part in establishing the analytic
version (1.3) of this combinatorial identity is to demonstrate that the lhs is the proper generating
function for partitions restricted by (1.5).

The point of this paper is to show that conformal field theory provides a simple method
for constructing the sum-side of (1.3) and related extensions. But to put this statement in
perspective, lets us turn to some remarks concerning the Andrews multiple sum.

1.2. Remarks on the Andrews multiple sum

The generating function for partitions (n1, . . . , nm) with prescribed number of parts subject
to the difference 2 condition (1.5), and containing at most i − 1 parts equal to 1, is

Fk,i(z; q) =
∞∑

m1,...,mk−1=0

qN2
1 +···+N2

k−1+Ni+···+Nk−1zN1+···+Nk−1

(q)m1 · · · (q)mk−1

, (1.6)

where the power of z gives the length of the partition. The standard proof of this result is based
on the following indirect trick [4] (see also [3] chapter 7). One first shows that the number
fk,i(m, n) of partitions of n = ∑

ni with m parts subject to (1.5), and containing at most i − 1
parts equal to 1, satisfies a simple recurrence relation on i. This is then lifted to a recurrence
relation for the generating function:

Fk,i(z; q) =
∑

m,n�0

zmqnfk,i(m, n). (1.7)

Finally, it is proved that the multiple sum on the right-hand side of (1.6) does satisfy this
recurrence relation, with the same boundary conditions. The uniqueness of the solution of
this recurrence problem completes the proof. But this is clearly a verification proof and not a
constructive one4.

To our knowledge, there are no elementary constructive proofs of (1.6)5. To illustrate
what is meant by such a proof, consider the case k = 2. The multiple sum reduces then to the
sum-side of the Rogers–Ramanujan identity. As it is well known, the generating function F2,i

is easily derived. Take i = 2. Looking for the generating function of partitions subject to the
condition

nj � nj+1 + 2, (1.8)

one first counts those restricted partitions of length m and then sum over m. These restricted
partitions can be described by the set of (standard) partitions of length at most m, whose

4 The original proof is based on the same recurrence relation for the generating function but the recurrence is not yet
rooted to the restricted partitions, that is, to fk,i [5].
5 There are constructive proofs, using either Durfee dissections [6] or a bijection to lattice paths [7] (see also [8]),
but (arguably) these are not quite elementary.
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generating function is (q)−1
m , to which we add the ‘staircase’ (2m − 1, . . . , 5, 3, 1). Since the

weight of the staircase is qm2
, we end up with the following expression for F2,2:

F2,2(z; q) =
∑
m�0

qm2
zm

(q)m
, (1.9)

where the variable z has been introduced to keep track of the length. For i = 1, there are no 1,
so that the staircase is shifted to (2m, . . . , 6, 4, 2) and this produces an extra term qm within
the sum. We thus recover the generating function F2,i (z; q) for i = 1, 2 by elementary steps.

How does this simple argument breaks for k > 2? Let us take k = 3 to illustrate the point
and set i = 3. The ‘ground state’ that replaces the staircase of the previous example is now
(. . . , 7, 5, 5, 3, 3, 1, 1). To use the same strategy as for the k = 2 case would amount to trying
to describe all partitions of length m with

nj � nj+2 + 2, (1.10)

in terms of the usual partitions of length at most m, to which we add the contribution of the
ground state (. . . , 7, 5, 5, 3, 3, 1, 1). But this simple description is simply not correct when
k > 2. This can be seen plainly from a counter-example. There are three allowed partitions
of length 3 and weight 7 satisfying (1.10): (5, 1, 1), (4, 2, 1) and (3, 3, 1). Subtracting
the ground-state contribution (3, 1, 1), we are left with (2, 0, 0), (1, 1, 0) and (0, 2, 0). But
(0, 2, 0) is not a genuine partition. This shows neatly that the argument used for k = 2 cannot
be extended to higher value of k. This is a simple rationale justifying the non-elementary
aspect of the proofs of (1.6).

1.3. The Andrews multiple sum in conformal field theory

We present here an elementary conformal-field-theoretical derivation of Fk,i(z; q). As already
mentioned, the multiple sum Fk,i(z; q) has appeared in the description of the basis of states of
some conformal field theories. In particular, with z = 1, it gives the irreducible (normalized)
characters of the minimal models M(2, p) [9]. But more important for us here is that for a
different specialization of z, one recovers the characters of the parafermionic Zk models in
their fermionic form [10, 2]6.

But how does this function Fk,i(z; q) actually appear in the parafermionic context? Using
the generalized commutation relations between the modes of the basic parafermionic field and
implementing the Zk invariance, we end up with a description of the basis of states formulated
in terms of the condition (1.5), where parts at distance k−1 differ by 2. More precisely, if A(1)

denotes the modes of the basic parafermionic field ψ1 of dimension 1 − 1/k, the descendent
states are of the form7

A(1)
−n1

· · ·A(1)
−nm

|hws〉, (1.11)

with ni being positive integers subject to (1.5) and |hws〉 stands for a highest-weight state.
There is in addition a boundary condition that specifies the irreducible module (the highest-
weight state) under consideration. With the module labelled by an integer 1 � i � k, this
condition reads

nm−i+1 � 2. (1.12)

This is clearly equivalent to the previously mentioned condition that specifies the maximal
number of 1 that can appear at the right end of the associated partition (n1, . . . , nm). At this

6 Note also that Fk,i (z; q) is precisely the character of the principal subspace of the ŝu(2)k−1 affine algebra [11]—cf
[12] for a readable account of these results and their implementation in a physical context.
7 Here the mode is defined up to a fractional part that is irrelevant for the present discussion.
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point, i.e., having reached a description of the basis of states, the generating function (1.6) is
invoked. Finally, by relating z to a power of q in order to adjust the total power of q to the
proper conformal dimension of the states (taking thus due care of the omitted fractional parts
in the modes), we recover the irreducible parafermionic characters8.

In this work, we present another basis of states for the parafermionic models. This basis
is not formulated solely in terms of the basic parafermionic modes but involves rather the
modes of the complete set of k − 1 parafermionic fields. The generating function of this basis
of states turns out to be built by elementary steps, analogous to those that led to the sum-side
of the Rogers–Ramanujan identity. The resulting expression is precisely the above function
Fk,i(z; q). Turning this around, the equivalence of the two bases of states for the parafermionic
theories, the one exposed here and the previous one formulated in terms of partitions restricted
by (1.5), entails a simple constructive proof of the Andrews multiple-sum identity.

Physically, this new derivation is quite appealing since each of the k − 1 sums on the rhs
of (1.6) is linked to the counting of a given type of modes. In other words, the number mj

labels the number of parafermionic modes of type j .

1.4. The Zk multi-parafermion basis: combinatorial formulation

Let us state our result in a field-theoretical independent way. The multi-parafermion basis of
states is equivalent to the set of k − 1 ordered partitions of respective lengths m1, . . . , mk−1,
i.e.,

(n(1), n(2), . . . , n(k−1)) with n(j) = (
n

(j)

1 , . . . , n(j)
mj

)
, (1.13)

where the parts within a partition satisfy

n
(j)

l � n
(j)

l+1 + 2j. (1.14)

The different partitions are further subject to the boundary conditions:

n(j)
mj

� j + max(j − i + 1, 0) + 2j (mj+1 + · · · + mk−1). (1.15)

The length m and the weight n of the partitions enumerated by fk,i(m, n) are related to the
above data as follows:

n =
k−1∑
j=1

mj∑
l=1

n
(j)

l and m =
k−1∑
j=1

jmj . (1.16)

Clearly, it is because we have a sequence of partitions with a difference condition at distance 1,
i.e., the condition (1.14), that the generating function is so easily constructed.

1.5. A natural generalization

After deriving this ‘new’ basis of states, we have found that it has actually appeared previously
in the literature on vertex operator algebras in [13] and in a much more general version9.
Therefore, at the worse, we have provided a conformal-field-theoretical proof of a result
already established by means of vertex-operator-algebra techniques. But we would like to
stress the remarkable simplicity of our argument which, by itself, justifies its presentation.

In addition to be simple, our approach seems to have an important potential for
generalization. This is illustrated here by the study of the graded parafermions (untreated

8 This construction could be rephrased in more Lie-algebraic terms in the language of vertex operator algebras
following [10].
9 The basis in [13] pertains to all models of the form ŝu(r + 1)k/ û(1)r . For ŝu(2), it reduces to the present basis.
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in [13]) presented in section 4. In that case, two multi-parafermion bases are derived. One of
the resulting generating function is new and it leads to a novel fermionic character formula for
graded parafermions.

2. The Zk parafermionic models

The parafermionic conformal algebra is spanned by k − 1 parafermionic fields ψr, r =
0, 1, . . . , k − 1, with dimension

hr = r
(

1 − r

k

)
. (2.1)

Note that ψ0 = I , the identity field. For the present purpose, we will only need the following
OPE [14]:

ψr(z)ψs(w) ∼ cr,s

(z − w)2rs/k

[
ψr+s(w) +

r

r + s
(z − w)∂ψr+s + · · ·

]
(r + s � k), (2.2)

where the structure constants cr,s are fixed by associativity [14] (their explicit form will not
be needed here).

Recall that the decomposition of the parafermionic field in modes depends upon the field
on which it acts [14]. It is essentially fixed by the mutual locality, which is the phase that
results from the substitution z → z e2π i, denoted by e2π iγ . The OPE ψr(z)ψs(w) indicates
that the mutual locality coefficient of ψr and ψs , denoted by γr,s , is γr,s = −2rs/k. From the
mutual locality coefficient, we can introduce a charge q, defined as

γr,s = −qrqs

2k
. (2.3)

The charge is normalized by setting q1 = 2, so that qr = 2r . The mutual locality coefficient of
ψr and φq , a generic field of charge q, will then be −rq/k. Therefore, the mode decomposition
of ψr acting on an arbitrary field φq reads

ψr(z)φq(0) =
∞∑

m=−∞
z−rq/k−m−rA

(r)

r(r+q)/k+mφq(0), (2.4)

the fractional power of z being fixed by the mutual locality.
In the following, and in agreement with our previous works [15, 2], the fractional part of

the modes is omitted (being fixed unambiguously by the charge of the field or state on which
it acts) and this is indicated by calligraphic symbols, i.e.,10

A(r)
n |φq〉 ≡ A

(r)

n+r(r+q)/k|φq〉. (2.5)

A form of the commutation relation between the A(r) and A(s) modes for r +s � k follows
from the computation of the integral

1

(2π i)2

∮
C1

dw

∮
C2

dz zqr/k+nwqs/k+m(z − w)−2+2rs/kψr(z)ψs(w)φq(0), (2.6)

by standard contour deformation11. The result is (omitting the state associated with φq(0) on
which it acts):

∞∑
l=0

C
(l)
2rs/k−2

[
A(r)

n−l−r−1A
(s)
m+l−s+1 − A(s)

m−l−s−1A
(r)
n+l−r+1

] = acr,sA(r+s)
n+m−r−s+1, (2.7)

10 This notation simplifies considerably the writing but it should be kept in mind that the conformal dimension of the
mode is no longer given by minus its index. Note that here |φq 〉 stands for an arbitrary state of charge q.
11 The integral for C2 circulating around w while C1 is a small contour around the origin is compared to the
difference of two contours, one with |z| > |w| and the other with |z| < |w|. Note that in the latter case,
ψr passes over ψs and this produces a phase factor (−1)−2rs/k that is partly cancelled by the one coming from
(z − w)−2+2rs/k → (−1)2rs/k(w − z)−2+2rs/k .



8230 P Jacob and P Mathieu

where

C
(l)
t = �(l − t)

l!�(−t)
, a =

(
ns − mr

r + s

)
. (2.8)

In the above integral, the power of z − w is chosen in order to pick up precisely the first
two non-vanishing terms of the OPE (in contradistinction with the usual presentation of the
commutation relation where only the first non-vanishing term is picked out). We stress that
this is made possible by the fact that in the module A

(r+s)
−r−s |0〉, there is a single descendant of

relative charge 0 and relative level 1 and it is proportional to L−1A
(r+s)
−r−s |0〉. Now the reason

for which we pick up these two terms is to extract the maximal amount of constraint from the
commutator without generating new types of fields, that is, fields other than ψr+s .12

Denote the parafermionic primary fields by {ϕ�|� = 0, . . . , k − 1} [14, 15]. To each
primary field, there corresponds a highest-weight state |ϕ�〉. In particular, |0〉 = |ϕ0〉.
The highest-weight conditions A(r)

−n−r |ϕ�〉 = 0 for n < 0 together with the singular vector(
A(1)

−1

)k−�+1|ϕ�〉 = 0 imply:

A(r)
−n−r |ϕ�〉 = 0 for n < max(r − k + �, 0). (2.9)

Note that ψr(0)|0〉 = A(r)
−r |0〉 ∝ (A−1)

r |0〉.

3. A multi-parafermion basis of states

We look for a basis of states constructed out of the k − 1 parafermionic modes, that is, a basis
of the form

A(1)

−n
(1)
1

· · ·A(1)

−n
(1)
m1

A(2)

−n
(2)
1

· · ·A(2)

−n
(2)
m2

· · ·A(k−1)

−n
(k−1)
1

· · ·A(k−1)

−n
(k−1)
mk−1

|ϕ�〉. (3.1)

The goal being to determine the set of independent states for a sequence of this type, one
needs to find those conditions on the indices n

(j)

l that would avoid over counting. These
conditions are to be fixed by the commutation relations. In those relations, we can clearly
set to zero those terms already considered. In particular, since each type of modes A(p)

n for
0 � p � k − 1 is considered successively, we can drop their contribution on the rhs of the
commutation relations (2.7) with p = r + s and set

∞∑
l=0

C
(l)
2rs/k−2

[
A(r)

n−l−r−1A
(s)
m+l−s+1 − A(s)

m−l−s−1A
(r)
n+l−r+1

] ∼ 0. (3.2)

Let us now look at the consequences of these simplified relations. Consider first the string
of A(1) modes and set r = s = 1 in (3.2):

∞∑
l=0

C
(l)
2/k−1

[
A(1)

n−l−2A
(1)
m+l − A(1)

m−l−2A
(1)
n+l

] ∼ 0. (3.3)

This shows that moving a A(1) mode to the right of another A(1) mode produces a shift 	 of
its mode index by at least 2, that is,

	 = n + l − (n − l − 2) = 2l + 2 � 2. (3.4)

Therefore, the A(1) sequence of independent descendants takes the form

A(1)

−n
(1)
1

· · ·A(1)

−n
(1)
m1

| · · ·〉 with n
(1)
l � n

(1)
l+1 + 2. (3.5)

12 For instance, the next subleading term of the OPE would involve the new field (T ψr+s ).
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In other words, because we have a shift by at least 2 in the commutation relation (3.3), we have
a difference condition of 2 between adjacent parts. Moreover, the highest-weight condition
requires nm1 � 1. But this inequality on nm1 is bounded to be modified by the presence of
higher modes. Indeed, consider next the commutation of A(1) and A(2):

∞∑
l=0

C
(l)
4/k−2

[
A(1)

n−l−2A
(2)
m+l−1 − A(2)

m−l−3A
(1)
n+l

] ∼ 0. (3.6)

We see that by moving a A(1) mode to the right of a A(2) mode generates a shift of at least 2.
Therefore, when the A(1)’s are preceded by a string of m2A(2) modes, the A(1) indices are
shifted by the additional term 2m2. More generally, the relation

∞∑
l=0

C
(l)
2r/k−2

[
A(1)

n−l−2A
(r)
m+l−r+1 − A(r)

m−l−r−1A
(1)
n+l

] ∼ 0 (3.7)

shows that passing A(1) over A(r) (for any r > 1) generates a shift of at least 2. Therefore, the
presence of higher modes to the right of the A(1) ones induces a shift of all the A(1) modes by
2(m2 + · · · + mk−1). This reproduces (1.15) for j = 1 up to the �-dependent boundary term.

Consider now the constraints on the A(2) modes. The highest-weight condition requires
n(2)

m2
� 2. Now, since we have already taken into account the commutation of A(2) with A(1),

it suffices to consider that of A(2) with A(r) modes for r � 2. But actually, the resulting
constraints for those cases cannot be obtained by the commutation relations since the various
types of modes have already been generated by the commutators that involve A(1). To be
explicit, we must take due care of the fact that, say A(1)A(3) ∼ A(2)A(2) ∼ A(4). Instead,
constraints on higher modes have to be determined by the associativity requirement. Since
A(2) ∼ A(1)A(1), moving A(r) past a A(2) mode induces a shift of at least 4 (2 for each A(1))
for any r � 2. Therefore, within the string of A(2) modes, we have a difference condition of 4
between adjacent modes (that follows by considering r = 2) and a global shift of four times
the number of other type of modes at its right, that is, 4(m3 + · · · + mk−1) (from the r > 2
cases). This yields (1.14) and (1.15) for j = 2 (again disregarding the �-part of the boundary
condition).

More generally, to extract the constraints for the commutation of A(i) and A(j) by
associativity, in order to find the less restrictive conditions, we expand the mode with smallest
index (i or j ) in terms of A(1) modes. We then find that the resulting shift is 2 min(i, j) for
the other mode (with index max (i, j)). This readily shows that the parts n

(j)

l satisfy

n
(j)

l � n
(j)

l+1 + 2j, (3.8)

together with

n(j)
mj

� j + 2j (mj+1 + · · · + mk−1). (3.9)

Let us now construct the generating function for this basis of states, ignoring in the first
step the boundary condition on �. Let us first take into account the contribution of the A(1)

modes. It is given by enumerating ordinary partitions of length at most m1, all shifted by the
staircase of weight:

m1−1∑
l=0

[2l + 1 + 2(m2 + · · · + mk−1)] = m2
1 + 2m1(m2 + · · · + mk−1). (3.10)

By introducing the dummy variable z1 to keep track of the number of A(1) modes, we have∑
m1�0

z
m1
1

qm2
1+2m1(m2+···+mk−1)

(q)m1

. (3.11)
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More generally, the contribution of the A(j) modes is obtained by enumerating ordinary
partitions of length at most mj shifted by the staircase of step 2j , whose weight, properly
modified by the presence of the number of modes of higher type (i.e., r > j), is

j

mj −1∑
l=0

[2l + 1 + 2(mj+1 + · · · + mk−1)] = jm2
j + 2jmj (mj+1 + · · · + mk−1). (3.12)

This contributes to the factor∑
mj �0

z
mj

j

qjm2
j +2jmj (mj+1+···+mk−1)

(q)mj

. (3.13)

Summing up all terms, we end up with the following generating function:
∞∑

m1,...,mk−1=0

qN2
1 +···+N2

k−1
∏k−1

j=1 z
mj

j

(q)m1 · · · (q)mk−1

, (3.14)

where the Nj are defined in (1.4). We can introduce a single variable to keep track of the
relative charge of the descendant states instead of the length of its various parts by defining
zj = zj . This leads to

∞∑
m1,...,mk−1=0

qN2
1 +···+N2

k−1zN1+···+Nk−1

(q)m1 · · · (q)mk−1

. (3.15)

Let us now take care of the boundary condition that characterizes the different modules,
that is, the �-dependence in the condition (2.9), which can be rewritten as:

n(r)
mr

� r + max(r − k + �, 0). (3.16)

The second term in the bound (3.16) produces a further global shift for all the indices of type
r such that r − k + � > 0. Summing their contribution generates the weight factor
k−1∑
r=1

max(r − k + �, 0)mr = mk−�+1 + 2mk−�+2 + · · · + (� − 1)mk−1 = Nk−�+1 + · · · + Nk−1.

(3.17)

This reproduces precisely the linear term in the exponent of q in (1.6) for i = k − � + 1. We
have thus recovered the function Fk,i(z; q) = Fk,k−�+1(z; q).

Note finally that by reinserting the fractional contribution of the modes (e.g., as described
in section 5.2 of [2]) one recovers the Lepowsky–Primc character formula for the Zk

parafermionic models [10].

4. New quasi-particle bases for graded parafermions

4.1. Preliminary remarks on graded parafermions

Graded parafermions [16] are associated with the coset ôsp(1, 2)k/̂u(1). The corresponding
chiral algebra is generated by 2k − 1 parafermions ψ̃r , r = 0, 1

2 , 1, . . . , k − 1
2 , of dimension

h̃r = r
(

1 − r

k

)
+

εr

2
, (4.1)

where εr = 0 if r is integer and 1 otherwise. The conformal dimension of the lowest
dimensional parafermion ψ̃1/2 is thus 1 − 1/4k. The defining OPE reads (r + s � k)

ψ̃r (z)ψ̃s(w) ∼ c̃r,s

(z − w)2rs/k+εr εs
[ψ̃r+s(w) + · · ·]. (4.2)
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Note that for r + s half-integer, there are more than one descendant field at level 1. The mode
decomposition is defined as

ψ̃r (z)φq(0) =
∞∑

m=−∞
z−rq/k−m−r−εr /2Ã

(r)

r(r+q)/k+mφq(0). (4.3)

As before, we will avoid writing the fractional part of the modes explicitly. The primary fields
ϕ̃� are parametrized by an integer � such that 0 � � � k. The highest-weight conditions
together with the singular vector

(
A(1)

−1

)k−�+1|ϕ̃�〉 = 0 [17] imply:

Ã(r)
−r−εr /2−n|ϕ̃�〉 = 0 if n < max

(
r − εr

2
− k + �, 0

)
. (4.4)

4.2. A first graded multi-parafermion basis

The first basis we look for is of the form

Ã(1/2)

−n
(0)
1

· · · Ã(1/2)

−n
(0)
m0

Ã(1)

−n
(1)
1

· · · Ã(1)

−n
(1)
m1

Ã(2)

−n
(2)
1

· · · Ã(2)

−n
(2)
m2

· · · Ã(k−1)

−n
(k−1)
1

· · · Ã(k−1)

−n
(k−1)
mk−1

|ϕ̃�〉. (4.5)

We then have to find the constraints on the different types of indices by considering the
commutation relations. Consider first the commutator between two Ã(1/2) modes. For this,
since the basis includes the Ã(1) modes and because the Ã(1) module has a single zero-charge
descendant at level 1, we can pick up the first two non-vanishing terms in the OPE. This results
into [16, 17] ∑

l�0

C
(l)
1/2k−1

[
Ã(1/2)

n−l−1Ã
(1/2)

m+l − Ã(1/2)

m−l−1Ã
(1/2)

n+l

] ∼ 0. (4.6)

This indicates a difference 1 between adjacent modes Ã(1/2):

n
(0)
l � n

(0)
l+1 + 1. (4.7)

The condition (4.4) yields n(0)
m0

� 1. Next, we consider the commutator of Ã(1/2) with Ã(r)

for r integer. Since we do not take into account the modes Ã(r+1/2) in this basis, we must
avoid picking up any non-vanishing terms on the rhs of the corresponding OPE. The strongest
constraint we get with this restriction is∑

l�0

C
(l)
r/k+1

[
Ã(1/2)

n−l+1Ã
(r)
m+l−r+1 − Ã(r)

m−l−r+1Ã
(1/2)

n+l+1

] = 0. (4.8)

This implies that the smallest mode-shifting we can get when a Ã(1/2) mode is moved past a
Ã(r) mode is zero. That indicates that the presence of higher modes at the right of the Ã(1/2)

string does not affect the latter modes, that is, it does not modify the bound n(0)
m0

� 1. As a
result, there will be no interacting term of the type m0mr in the generating function.

For the other modes, the analysis is similar to the one pertaining to the non-graded case.
Hence, (1.14) and (1.15) still hold for j � 1.

This basis has the following generating function:
∞∑

m0,m1,...,mk−1=0

qm0(m0+1)/2+N2
1 +···+N2

k−1+Nk−�+1+···+Nk−1z
m0
0

∏k−1
j=1 z

mj

j

(q)m0(q)m1 · · · (q)mk−1

. (4.9)

Setting z0 = z, zj = z2j and summing over the m0 modes, this becomes

(−zq)∞
∞∑

m1,...,mk−1=0

qN2
1 +···+N2

k−1+Nk−�+1+···+Nk−1z2(N1+···+Nk−1)

(q)m1 · · · (q)mk−1

= (−zq)∞Fk,k−�+1(z
2; q), (4.10)
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which is precisely the result obtained in [18] (cf equation (3.24)). The simplicity of this
derivation contrasts heavily with that in the later reference, which requires the enumeration of
restricted jagged partitions [17, 19].

4.3. A second graded multi-parafermion basis

The second basis we consider involves all graded-parafermionic modes, that is,

Ã(1/2)

−n
(1/2)

1

· · · Ã(1/2)

−n
(1/2)
m1/2

Ã(1)

−n
(1)
1

· · · Ã(1)

−n
(1)
m1

Ã(3/2)

−n
(3/2)

1

· · · Ã(3/2)

−n
(3/2)
m3/2

· · · Ã(k−1/2)

−n
(k−1/2)

1

· · · Ã(k−1/2)

−n
(k−1/2)
mk−1/2

|ϕ̃�〉. (4.11)

Let us note readily the boundary condition on each index n
(j)
mj

that results from (4.4)

n(j)
mj

� j +
εj

2
+ max

(
j − εj

2
− k + �, 0

)
. (4.12)

Again we start by considering the commutation relation between the Ã(1/2) and Ã(r)

modes, where now r can be both integer and half-integer. For r = 1/2, the analysis of the
previous subsection still holds. Thus, here again, the Ã(1/2) modes have to be distinct. For
r > 1/2, if the produced module Ã(r+1/2) has a single zero-relative-charge descendant at
level 1, we can pick up two non-vanishing terms on the rhs of the OPE. This is the case when
r is half-integer. The relevant commutation relation is then∑

l�0

C
(l)
r/k−1

[
Ã(1/2)

n−l−1Ã
(r)
m+l−r − Ã(r)

m−l−r−1Ã
(1/2)

n+l

] ∼ 0. (4.13)

This implies a shift of 1 in Ã(1/2) modes for each Ã(r) modes at its right, with r half-integer. For
r integer, it turns out that there are generically three zero-relative-charge descendant at level 1
in the module Ã(r+1/2).13 Therefore, only the first non-vanishing term must be considered in
the OPE ψ1/2(z)ψr(w). This gives∑

l�0

C
(l)
r/k−1

[
Ã(1/2)

n−l−1Ã
(r)
m+l−r+1 − Ã(r)

m−l+rÃ
(1/2)

n+l

] ∼ 0, (4.14)

and again this implies a shift of 1 in Ã(1/2) mode for each Ã(r) modes at its right, with r integer.
Associativity (decomposition of higher modes into a product of Ã(1/2) ones) shows that when
Ã(r) is passed over a Ã(s), there is a difference 2 min (r, s). This is thus a difference of 2r

between the Ã(r) modes and a shift of 2r for each higher modes at its right. When summing
over the contribution of the r modes, this generates the weight

rm2
r + 2rmr(mr+1/2 + mr+1 + · · · + mk−1/2). (4.15)

The �-dependent boundary term that has been ignored so far is evaluated as in the non-
graded case:

k−1/2∑
r=1

max
(
r − εr

2
− k + �, 0

)
mr

= (mk−�+1 + mk−�+3/2) + · · · + (� − 1)(mk−1 + mk−1/2) ≡ L̃k−�+1. (4.16)

13 To see this neatly, take k large. The character (normalized such that the leading term is 1) of the vacuum module
of relative charge 2r (that is, the module of A(r)

−r |0〉) is given by (for r > 1/2)

χ2r (q) ≈ V2r (q) − V2r+1(q) = 1 + (1 + 2εr )q + · · ·
where Vt denotes the Verma module of relative charge t (cf equations (5.4)–(5.6) and (5.12), (5.13) of [18]).
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The resulting generating function is thus

∞∑
m1/2,m1,m3/2,...,mk−1/2=0

q
1
2 (Ñ

2
1/2+Ñ

2
1+···+Ñ

2
k−1/2+M1/2)+L̃k−�+1

∏k−1/2
j=1/2 z

mj

j

(q)m1/2(q)m1 · · · (q)mk−1/2

. (4.17)

where

Ñj = mj + mj+1/2 + · · · + mk−1/2 = Mj + Mj+1/2, (4.18)

with

Mj = mj + mj+1 + · · · + mk−1+εj /2, (4.19)

and L̃k−�+1 defined in (4.16). With zj = z2j , the z factor reduces to zÑ where Ñ = ∑
2jmj

and we have

Gk,k−�+1(z; q) =
∞∑

m1/2,m1,m3/2,...,mk−1/2=0

q
1
2 (Ñ

2
1/2+Ñ

2
1+···+Ñ

2
k−1/2+M1/2)+L̃k−�+1zÑ

(q)m1/2(q)m1 · · · (q)mk−1/2

. (4.20)

4.4. A generalized Rogers–Ramanujan identity

The equivalence of the two new graded bases implies the equality (with i = k − � + 1):

Gk,i(z; q) = (−zq)∞Fk,i(z
2; q). (4.21)

For z = 1, the rhs has a product form (cf [20] theorem 11). This and the above equality lead
to the following generalization of the Rogers–Ramanujan identity14:

∞∑
m1/2,...,mk−1/2=0

q
1
2 (Ñ

2
1/2+Ñ

2
1+···+Ñ

2
k−1/2+M1/2)+L̃i

(q)m1/2(q)m1 · · · (q)mk−1/2

=
∞∏

n=1

(1 + qn)

∞∏
n�=0,±i mod (2k+1)

(1 − qn)−1. (4.22)

We stress that with the expression we had previously [18] for the specialized multi-sum,
i.e., (−q)∞Fk,i(1; q), the factor (−q)∞ = ∏∞

n=1(1 + qn) would cancel on both sides of the
‘sum = product’ equality

(−q)∞Fk,i(1; q) =
∞∏

n=1

(1 + qn)

∞∏
n�=0,±i mod (2k+1)

(1 − qn)−1, (4.23)

reducing then to the usual Andrews–Gordon identity. But there is no such cancellation with
(4.22) (except for the trivial case k = 1). In particular, for k = 2, it reads

∞∑
n,m,p=0

q
1
2 n2+m2+ 3

2 p2+n(m+p)+2mp+(2−i)(m+p)+ 1
2 (n+p)

(q)n(q)m(q)p

=
∞∏

n=1

(1 + qn)
∏

n�=0,±i mod 5

1

1 − qn
, (i = 1, 2) (4.24)

Because it involves the modulus 5 on the rhs, this identity could be viewed as the fermionic
deformation of the original Rogers–Ramanujan identity (1.1).

14 Multiple sums similar but not identical to Gk,i (z; q) have been conjectured in [21] as fermionic expressions for
the Ramond characters of the superconformal minimal model SM(2, 4k). (These identities have been subsequently
proved in [22]—see also theorem 4.4 of [23]). Note that if we relabel our mj as m2j and set m2(k−�+1) = ms

(so that s is even) together with m2k−1 = 0 in our formula, we recover the expression given in the second line of
equation (2.6) in [21]. This signals an unexpected relation between the SM(2, 4k) models and the Zk graded
parafermions. The present analysis, in the light of the recent work [24], provides a possible path for an alternative
proof of these identities.
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There is a striking similarity between (4.22) for i = k and the identity of theorem 4.5 of
[23]. In fact, Warnaar [25] has shown that these two relations are essentially equivalent. The
sketch of the proof—which is an analytic counterpart of our conformal-field-theoretical proof
of (4.21)—is reported in the appendix.

4.5. The Zk graded multi-parafermion bases: combinatorial formulation

Taken together, the results of [17] and the present ones have the following combinatorial
interpretation. There is an equality between the number of partitions described by the following
three sets.

(1) The first set corresponds to the jagged partitions (n1, . . . , nm) defined as

nj � nj+1 − 1, nj � nj+2, nm � 1, (4.25)

with at most i = 1 pairs of 01 and further subject to the following the k-restrictions:

nj � nj+2k−1 + 1 or nj = nj+1 − 1 = nj+2k−2 + 1 = nj+2k−1, (4.26)

for all values of j � m − 2k + 1, with k > 1.
(2) The second set corresponds to a sequence of k ordered partitions (n(0), n(1), n(2), . . . ,

n(k−1)) of respective lengths m0,m1, . . . , mk−1, with

n
(0)
l � n

(0)
l+1 + 1, n

(j)

l � n
(j)

l+1 + 2j, (4.27)

with the different partitions being further subject to the boundary conditions

n(0)
m0

� 1, n(j)
mj

� j + max(j − i + 1, 0) + 2j (mj+1 + · · · + mk−1), (4.28)

with j � 1.
(3) Finally, the third set corresponds to a sequence of 2k − 1 ordered partitions (n(1/2), n(1),

n(3/2), . . . , n(k−1/2)) of respective lengths m1/2,m1, . . . , mk−1/2, with

n
(j)

l � n
(j)

l+1 + 2j, (4.29)

and the boundary conditions

n(j)
mj

� j +
εj

2
max

(
j − εj

2
+ i + 1, 0

)
+ 2j (mj+1/2 + mj+1 + · · · + mk−1/2). (4.30)

5. Conclusion

In this work, we have displayed a multi-parafermion basis of states for the Zk parafermionic
models. The basis elements are in one-to-one correspondence with the set of k − 1 ordered
partitions described in equations (1.13), (1.14) and (1.15). This is an alternative to the usual
description of the basis in terms of partitions restricted by (1.5) [10, 2]. In the parafermionic
context, the argued equivalence of the two bases leads us to the conclusion that the two sets
of partitions, namely (1.13)–(1.15) and (1.5), are equinumerous. Clearly, finding a direct
bijection would allow us to strip off this elementary derivation of Fk,i from any parafermionic
dressing. Moreover, such a bijection might point towards natural ‘higher-rank’ generalizations
of the Andrews–Gordon identity.

As previously pointed out, the ‘new’ Zk basis has already been derived in [13]. We have
thus emphasized here the novelty (and simplicity) of the conformal-field-theoretical derivation.
As an original extension, two new bases of states for graded parafermions have been displayed.
Each one leads to a distinct fermionic form of the graded-parafermion characters once the
contribution of the fractional part of the parafermionic modes is reinserted. The expression
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linked to the basis involving all parafermionic modes is new. It is interesting to see that for
this basis, an unusual aspect of the representation theory of the graded parafermions (when
compared to the standard Zk representation theory) plays a crucial role, which is that some
graded-parafermionic modules have more than one level-1 descendant of relative charge 0.

This work offers another illustration of the non-uniqueness of the fermionic characters
of the irreducible modules in a given model. Here, this is rooted in the non-uniqueness of
the quasi-particle basis. There are indeed different choices for the spanning set of creation
operators that are compatible with a description of the basis in terms of restriction rules akin to
exclusion relations. For the Zk models, there are two choices: {A(1)} and {A(1), . . . ,A(k−1)}.
For the graded case, there are three such sets: {Ã(1/2)}, {Ã(1/2), Ã(1), Ã(2), . . . , Ã(k−1)} and
{Ã(1/2), Ã(1), Ã(3/2), . . . , Ã(k−1/2)}. These sets are not necessarily exhaustive since, for
instance, one could possibly consider a choice where some parafermionic fields are ignored15,
or even one involving a mixtures of selected parafermionic modes augmented by the addition
the Virasoro or higher integer-spin field modes.
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Appendix. The analytic proof of (4.21)

The equality (4.21), that has been established here by a field-theoretical argument, can also be
demonstrated by analytical methods [25]. The general argument would proceed by a simple
extension of lemma A.1 of [23]. We will content ourselves with the consideration of the k = 2
case and indicate at the end how the analysis can be generalized to k > 2. Let us first replace
mj by m2j :

G2,i (z; q) =
∞∑

m1,m2,m3=0

q
1
2 (m1+m2+m3)

2+ 1
2 (m2+m3)

2+ 1
2 m2

3+ 1
2 (m1+m3)+(2−i)(m2+m3)zm1+2m2+3m3

(q)m1(q)m2(q)m3

. (A.1)

Next, we replace m2 by m2 − m3 and use the convention that 1/(q)n = 0 if n < 0

G2,i (z; q) =
∞∑

m1,m2,m3=0

q
1
2 (m1+m2)

2+ 1
2 m2

2+ 1
2 m2

3+ 1
2 (m1+m3)+(2−i)m2zm1+2m2+m3

(q)m1(q)m2−m3(q)m3

=
∞∑

m1,m2=0

q
1
2 m1(m1+2m2+1)+m2

2+(2−i)m2zm1+2m2

(q)m1(q)m2

m2∑
m3=0

(q)m2

(q)m2−m3(q)m3

q
1
2 m3(m3+1)zm3 .

(A.2)

Using the q-binomial theorem ([3], equation (3.3.6))
n∑

j=0

(q)n

(q)j (q)n−j

q
1
2 j (j+1)xj = (−xq)n, (A.3)

we can perform the summation over m3 and get

G2,i (z; q) =
∞∑

m1,m2=0

q
1
2 m1(m1+2m2+1)+m2

2+(2−i)m2zm1+2m2

(q)m1(q)m2

(−zq)m2 . (A.4)

15 On the analytic side, the argument of the appendix shows clearly how to eliminate, from the generating function,
an arbitrary set of modes associated with the graded parafermions ψr with r half-integer.
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We next make use of the Euler relation ([3], equation (2.2.6)):
∞∑

n=0

q
1
2 n(n−1)xn

(q)n
= (−x)∞, (A.5)

to sum over m1 with x = zqm2+1:

G2,i (z; q) =
∞∑

m2=0

(−zqm2+1)∞(−zq)m2

qm2
2+(2−i)m2z2m2

(q)m2

= (−zq)∞
∞∑

m2=0

qm2
2+(2−i)m2z2m2

(q)m2

= (−zq)∞F2,i (z
2; q). (A.6)

The generalization to k > 2 is straightforward. The odd modes m2j+1 for j > 1 are summed
successively, starting from the largest one, by the q-binomial theorem, while the sum over
m1 is done by the Euler relation. The identity of theorem 4.5 in [23] is similarly related to
the multiple sum of Andrews. With the suitable addition of a linear term, the latter is thus
essentially equivalent to our (4.21).
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